
The Social Signal Interpretation Framework (SSI)
for Real Time Signal Processing and Recognition

Johannes Wagner 1, Florian Lingenfelser 1 and Elisabeth André 1

1Lab for Human Centered Multimedia, Augsburg University
johannes.wagner@informatik.uni-augsburg.de

Abstract
The construction of systems for recording, processing and
recognising a human’s social and affective signals is a chal-
lenging effort that includes numerous but necessary sub-tasks
to be dealt with. In this article, we introduce our Social Signal
Interpretation (SSI) tool, a framework dedicated to support the
development of such systems. It provides a flexible architecture
to construct pipelines to handle multiple modalities like audio
or video and establishing on- and offline recognition tasks. The
plug-in system of SSI encourages developers to integrate ex-
ternal code, while a XML interface allows anyone to write own
applications with a simple text editor. Furthermore, data record-
ing, annotation and classification can be done using a straight-
forward graphical user interface, allowing simple access to in-
experienced users.
Index Terms: speech processing, social signal processing, mul-
timodal fusion, real-time recognition, machine learning

1. Introduction
The correct interpretation of a spoken message often requires
incorporation of additional non-verbal signs. For example one
might accompany a sentence with a subtle grin to indicate an
ironic meaning, or by lowering the head give additional hints
that he or she is in a sad mood. In fact, automatic recognition
of human’s social signals has become an elaborated field of re-
search over the last years. In order to provide the capabilities
for sensing, processing and interpretation of speech, facial ex-
pressions, gestures, etc. we need to overcome a great number of
challenges. A universal framework – equipped with appropri-
ate technical and algorithmical solutions for given requirements
– is desirable for the assembly of such applications. Therefore
we will first introduce important tasks to be handled by such a
framework in general and follow up with the presentation of a
practical signal interpretation framework.

Depending on the type of signal we would like to observe,
we need to employ sensors, such as cameras, microphones, or
haptic devices. Thus data recording defines the first task, which
combines connection of adequate hardware as well as streaming
and synchronization of captured signals. Since recorded signals
are just raw data, we need a strategy to separate interesting parts
of the signals from periods carrying irrelevant information. This
effort is called data segmentation and involves the detection of
onsets and offsets of meaningful actions. Finally, a detected
action has to be classified into one out of a set of predefined
categories, or – in case it does not fit to any of the available
categories – labelled as unclassified. Sometimes a mapping to
continuous values is used instead of discrete states. In any case,
two steps are required for adequate categorisation, namely the
mapping of the raw signal values onto a set of compact features

keeping only the essential information of the segment (feature
extraction) and the actual classification according to a classifi-
cation scheme with one or more pre-trained classification mod-
els.

Obtaining a well fitting classification model is a crucial
part of signal processing and recognition and involves several
procedures. A collection of representative samples is needed
in first place. This requires separate recording sessions during
which users are either asked to show certain actions or interact
with systems that have been manipulated to induce desired
behaviours. Afterwards, the collected data is observed by
experts who describe the user interaction (annotation). Based
on categories assigned by the raters, statistical methods can
be applied to separate the feature space into sub-regions, with
each region representing another category. Several linear (e. g.
LDA or Naive Bayes) as well as non-linear (e. g. SVM or
ANN) classification techniques exist for this purpose. While
the extraction of discriminative features in combination with
suited classification is important, one can easily neglected that
the success of a model in the first place depends on the quality
of the training samples. Here, two general approaches are
possible: collecting data from several (ideally representative)
subjects to build a universal user-independent model; or
running new recordings for each user to build personalized
user-dependent models. While the first approach allows
a straightforward use of the system it involves the danger
that the model does not adequately render the situation in
which it is used. The second approach, however, requires tools
that allow a user to record own data and extract a model out of it.

In order to assemble all mentioned parts, we present in this
paper our Social Signal Interpretation (SSI) toolbox, a frame-
work for building online recognition systems [1]. In particular
SSI supports the following tasks:

• Parallel and synchronized streaming from several sensor
devices.

• On-the-fly signal filtering, feature extraction, and classi-
fication.

• Database recording, offline sampling and model learn-
ing, including tools to evaluate learned models.

• A graphical user interface (GUI) to obtain and evaluate
personalized models.

2. Signal Processing Framework
There is a number of free and commercial software related to
machine learning. Some of them are specialized in a certain
task, such as Weka1, which offers a large collection of ma-

1http://www.cs.waikato.ac.nz/ml/weka/



chine learning algorithms for data mining, or tailored to a cer-
tain modality, such as Praat2 for audio processing. Others, like
Matlab3 or its free counterpart Octave4, offer more general tool-
boxes and a simplified scripting language for applying a large
body of signal processing algorithms. The variety of tools with
support for live sensor input, on the other hand, is considerably
smaller. Examples of architectures for multimodal processing,
are Pure Data [2], EyesWeb [3] or OpenInterface [4]. Here,
developers can choose from a considerable set of input, pro-
cessing and output components, and patch them using a graphi-
cal programming environment to construct complex processing
pipelines. However, they are not specially tuned for building
machine learning pipelines and collecting training corpora. A
toolkit developed for real-time affect recognition from speech
is the openEAR toolkit [5] with its feature extracting backend
openSMILE [6]. It is, however, limited to audio processing.

The Social Signal Processing framework (SSI) comple-
ments existing tools by offering special support for the devel-
opment of online recognition systems from multiple sensors
[1]. SSI covers tasks to assemble the machine learning pipeline,
ranging from live sensor input and real-time signal processing
to high-level feature extraction and online classification. Dif-
ferent strategies for fusing information from different modali-
ties at data, feature and decision level are available, as well as
a generic GUI for data acquisition and model training. Even
though SSI is not limited to the task of emotion recognition it
has been developed with a focus on sensing of affective and so-
cial signals.

SSI is implemented in C/C++ and optimized to run on com-
puter systems with multiple CPUs. Even though SSI is devel-
oped under Microsoft Visual Studio, its XML interface allows
anyone to write and edit applications with a simple text editor.
Like other patch-based tools, a recognition pipeline in SSI is
set up from autonomic components. The run-time engine takes
care of the execution and synchronization of involved modules
and to handle the communication between connected compo-
nents. This architecture of decoupled elements greatly benefits
the exchange and extension of pipelines. For instance, a new
filter algorithm can be scheduled ahead of the feature extrac-
tion or a different classification scheme can be plugged without
touching the remaining parts of the pipeline. To support the in-
terchangeability of components, the framework defines abstract
interfaces for four different component types:

• Sensors deliver one or more signal streams to the
pipeline, either by connecting a physical sensor device
or through simulation (e. g. from a file on disk).

• Transformers manipulate one or more data streams and
feeds it as a new stream back to the pipeline.

• Triggers signal the beginning and ending of detected ac-
tions.

• Consumers receive one or more signal streams without
writing back to the pipeline. Here, streams can be stored
to disk, streamed to an external application (e. g. via
sockets) or visualized in a graph. In combination with
a trigger this can also be the seat of a classifier.

The general architecture of SSI and a simple plug-in sys-
tem suits the integration of external code. External tools,
such as OpenCV, ARToolKitPlus, SHORE, Torch, Speex, Wat-
son as well as several tools developed at our lab (e. g. AuBT,

2http://www.praat.org
3http://www.mathworks.com/products/matlab/
4http://www.gnu.org/software/octave/

EmoVoice, WiiGLE) have been successfully integrated to the
system. Currently, SSI supports recording and streaming from
multi-channel audio interfaces, web/dv cameras, Nintendo’s
Wii remote control, Microsoft’s Kinect and various physiologi-
cal sensors.

3. Online Recognition Pipeline
Let us illustrate the functions of the SSI framework by means
of a concrete example. In order to build an emotional speech
recognizer we start from an audio source, e. g. a microphone in-
tegrated in a headset. A fundamental property of human voice
called pitch is the number of vibrations of the vocal cords per
second. In order to detect voice activity, we connect the au-
dio source with a pitch transformer and plug it to an activity-
detector (AD). The AD will raise an event to all connected com-
ponents as soon as speech activity is detected. As a handy side
effect, pitch is also a well-known indicator of emotional speech.
Since the buffer mechanism of the run-time engine allows sev-
eral components to share the same signal source, we can di-
rectly forward the pitch signal to a (at this stage pre-trained)
classifier, e. g. a Support Vector Machine (SVM). To bring the
detected pitch segments into the compact fixed-length format
needed by the SVM, we place another transformer (StatFeat) to
apply a number of statistical functions, such as mean, standard
deviation, range, etc. Figure 1 shows a scheme of this basic
recognition engine.

Writer

PosFeat

Fusion

SVM

AD

StatFeat

speechdetected?

Audio
sensor

Pitch

AD

StatFeat

speechdetected?

Audio Pitch

MFCCs

StatFeatFaceDetecVideo

SVM

AD

StatFeat

speechdetected?

Audio Pitch

MFCCs

Disk

training

sensor

sensor

sensor

transformer

transformer

transformer

transformer consumer

trigger

transformer consumer

consumer

transformer

transformer

transformer

transformer transformer

transformer

consumer

trigger

trigger

facedetected?

Figure 1: Basic Pipeline with Pre-Trained Classification

As mentioned earlier, recognition needs training. A small
extension allows us to enhance the previous pipeline with the
possibility to collect data. We simply plug in a component that
stores the processed streams to disk. Several alternatives are
possible. We could store the features of each detected speech
segment right before they are passed to the classifier, but this ap-
proach has two obvious disadvantages: It is neither possible to
replay the collected samples (e. g. for annotation purpose), nor
to change the applied feature extraction at a later stage. Hence,
it is obviously preferable to store raw audio instead. SSI offers
tailored tools to apply a pipeline (or parts of a pipeline) to of-
fline data. In this way we can simulate the transformations in the
pipeline during the training of the classifier. Furthermore sev-
eral feature selection algorithms and over-sampling techniques
(for under represented classes) are part of the SSI framework.
The modified pipeline is illustrated in Figure 2.

Writer

PosFeat

Fusion

SVM

AD

StatFeat

speechdetected?

Audio
sensor

Pitch

AD

StatFeat

speechdetected?

Audio Pitch

MFCCs

StatFeatFaceDetecVideo

SVM

AD

StatFeat

speechdetected?

Audio Pitch

MFCCs

Disk

training

sensor

sensor

sensor

transformer

transformer

transformer

transformer consumer

trigger

transformer consumer

consumer

transformer

transformer

transformer

transformer transformer

transformer

consumer

trigger

trigger

facedetected?

Figure 2: Extended Pipeline with Data Storage

Note that apart from the writer component, another trans-
formation block has been added to the example. It calculates
the Mel-frequency cepstral coefficients (MFCCs) and therefore
makes more features available for classification. In this manner,



a pipeline can be stepwise improved with new filter and feature
algorithms5.

It is also possible to extend the system with further modali-
ties. In this example we add a camera to analyse facial expres-
sions of the user in addition to the vocal observations. In the
optimal case, a new modality will carry complementary infor-
mation and improve the robustness of the recognition. To do so,
we set up a second pipeline by placing a camera sensor to which
we connect a face detector (FaceDetec). For each image frame
in which a face is found, we extract position features related to
a person’s mimic, such as position of eye browns or corners of
the mouth6 (see Figure 3).

Writer

PosFeat

Fusion

SVM

AD

StatFeat

speechdetected?

Audio
sensor

Pitch

AD

StatFeat

speechdetected?

Audio Pitch

MFCCs

StatFeatFaceDetecVideo

SVM

AD

StatFeat

speechdetected?

Audio Pitch

MFCCs

Disk

training

sensor

sensor

sensor

transformer

transformer

transformer

transformer consumer

trigger

transformer consumer

consumer

transformer

transformer

transformer

transformer transformer

transformer

consumer

trigger

trigger

facedetected?

Figure 3: Multimodal Pipeline

In order to combine audio and visual information to a single
decision SSI offers several alternatives. A straightforward way
would be to merge the features calculated from each modality
to a high dimensional, universal feature set and use it to train
a single classifier (feature level fusion). Alternatively, separate
classifiers can be trained, which outputs are combined by means
of decision level fusion. SSI implements various combination
rules, including weighted and unweighted voting schemes, al-
gebraic combiners of continuous classifier outputs, specialist
selection algorithms, constructed lookup tables, etc. Further-
more, schemes for meta level fusion, where model results are
declared as meta data and used for the training of meta classi-
fiers, are available as well.

4. Model Training
So far, no general purpose databases for emotion recognition
exist. This is due to a number of reasons: in contrast to speech
recognition, which is based on a fixed set of phonemes, it is dif-
ficult if not impossible to find a common sense on emotional
states to be included in such a database. Dimensional models
like Mehrabian’s PAD (Pleasure, Arousal, Dominance) model
[8] could be an alternate approach, e. g. by training discrete re-
gions in the model and afterwards interpolating over the remain-
ing area. But even then a number of other factors such as record-
ing quality, background noise, user groups (gender, age, etc.),
and culture differences have to be considered and make it hard
to find a general solution. Available databases with emotional
speech, for instance, have been recorded under rather specific
conditions and cover only a limited set of emotions. Especially
non-prototypical emotions are usually under-represented. As a
result, databases like the Berlin Emotional Speech Database [9]
or FAU Aibo Emotion Corpus [10] are well suited for testing
the performance of an emotional speech recognizer, but will not

5In addition to pitch and MFCCs, SSI offers components for extract-
ing features from energy, duration, voicing and voice quality [7].

6A tool that can be used for this task and has already been integrated
into the SSI framework is the the SHORE library developed by Fraun-
hofer:
http://www.iis.fraunhofer.de/en/bf/bv/ks/gpe/.

necessarily produce a model that fits specific requirements in
terms of emotional states and environmental factors.

These reasons often force developers to collect their own
databases. Since most recognition systems are based on ma-
chine learning methods this usually requires a considerable
amount of emotional data. Furthermore, to ensure satisfying
recognition rates, it is decisive that the conditions during train-
ing are similar to the conditions that can be expected for the
final system. In the best case the training data will be recorded
from users interacting with the actual application. However,
our experiences have shown that this is often too time consum-
ing, especially since it requires thorough annotation by experts
[7]. Instead, application developers should be provided with a
tool that allows them to create databases on their own, prefer-
ably in a simple and fast fashion. As mentioned earlier two
scenarios are possible: creating a user-independent model from
recordings of a group of representative users, or building per-
sonalized user-depend model for each user who intends to use
the application. To allow for both options we have developed a
graphical user interface (GUI) that is simple enough to enable
even novice users to complete all necessary steps to obtain their
own model, but at the same time has the option to conduct and
manage recordings of multiple users to train user-independent
models.

The GUI is actually a wrapper for a pipeline implemented
with the SSI framework (see Section 3). Since the pipeline over-
takes all tasks related to signal processing (data recording, seg-
mentation, feature extraction, classification), the GUI is not re-
stricted to a certain problem, but offers a generic interface to
conduct all kind of recognition tasks. For instance, an emo-
tional speech classifier can be trained just as well as a gesture
recognizer. Figure 4 includes a screenshot of the GUI showing
a video and an audio track together with its annotation line.

Figure 4: SSI/ModelUI offers a simple and generic way
to record training data and build user-dependent or user-
independent models out of it. Different recognition tasks in-
cluding multiple users and sessions can be managed (top layer).
In the screenshot a recorded session with a video and audio
stream is reviewed. Below the audio signal an annotation track
has been loaded for editing.

During a recording, stimuli are presented to the user as a
series of html pages. The pages may include textual instruc-
tions, but also images or videos. Developers and users are free
to change the content according to their own emotional expe-



riences. During the recording actions detected by the pipeline
(e. g. speech segments) are reported back to the GUI, which may
react by jumping to the next stimuli. At the same time, on- and
offset of the actions are stored on disk and related to the label
of the current stimulus. In this way an annotations are automat-
ically created for each signal. To revise annotations (e. g. if the
reaction of the user differs from the intended emotion or actions
were falsely detected or missed) they can be visualized together
with the recorded signal streams and edited. It is also possible
to create new annotations by highlighting an area within a signal
and convert it to a new segment in the annotation. If videos were
recorded, they can be replayed to gain additional information
and hints for annotation. Finally, available feature extraction
and classification algorithms can be evaluated in terms of recog-
nition performance. Depending on whether a user-dependent or
user-independent model is required, it is possible to select data
of a single user or of several user for training. Once a model is
trained, it can be immediately tested on live input.

5. Practical Applications
SSI is being used in the EU-funded Metabo project for real-
time physiological data analysis of diabetes patients in an au-
tomotive environment. Our EmoVoice component [11] as part
of the SSI framework, was used in a various number of show-
cases in the European projects CALLAS and IRIS to analysis
the expressivity in user speech. Examples are the E-Tree [12],
which is an Augmented Reality art installation of a virtual tree
that grows, shrinks, changes colours, etc. by interpreting af-
fective multimodal input from video, keywords and emotional
voice tone. In the virtual storytelling application EmoEmma
[13], a user can influence the outcome of the story by acting as
one of the characters. Furthermore, SSI was employed to con-
struct the CALLAS expressivity corpus [14]. It consists of syn-
chronized recordings from two high-quality cameras, an USB
microphone, two Nintendos Wii remote controls and a data
glove. Using the graphical interface described in Section 4 it
became possible to repeat the same experiment in three coun-
tries, namely Germany, Greece and Italy. In total, about 15h of
interaction from more than 50 subjects was collected. Within
the AVLaughterCycle project, which aims at developing an au-
diovisual laughing machine, capable of recording the laughter
of a user and to respond to it, SSI is used for recording and
real-time processing [15].

6. Conclusion
We have introduced our Social Signal Interpretation (SSI) tool-
box, a framework for the rapid development of on- or offline
signal processing and recognition systems. The functionality of
SSI was illustrated by means of an affective speech recognition
pipeline, which is stepwise extended to a multimodal recog-
nition task. Most recognition systems are based on machine
learning methods, which require a considerable amount of data
for training. With this in view, we have also talked about the
graphical front-end for SSI that lets novice users train their own
model. The source code of the SSI framework and the GUI tools
are freely available under LGPL7.

7. Acknowledgements
The work described in this paper is funded by the EU under
research grant CALLAS (IST-34800), CEEDS (FP7-ICT-2009-

7http://hcm-lab.de/ssi.html

5) and the IRIS Network of Excellence (Reference: 231824).

8. References
[1] J. Wagner, E. André, and F. Jung, “Smart sensor integration:

A framework for multimodal emotion recognition in real-time,”
in Affective Computing and Intelligent Interaction (ACII 2009).
IEEE, 2009.

[2] M. Puckette, “Pure data: another integrated computer music en-
vironment,” in Proc. of the Second Intercollege Computer Music
Concerts, 1996, pp. 37–41.

[3] A. Camurri, P. Coletta, G. Varni, and S. Ghisio, “Developing mul-
timodal interactive systems with eyesweb xmi,” in NIME ’07:
Proc. of the 7th international conference on New interfaces for
musical expression. New York, NY, USA: ACM, 2007, pp. 305–
308.

[4] M. Serrano, L. Nigay, J.-Y. L. Lawson, A. Ramsay, R. Murray-
Smith, and S. Denef, “The openinterface framework: a tool for
multimodal interaction.” in CHI ’08: CHI ’08 extended abstracts
on Human factors in computing systems. New York, NY, USA:
ACM, 2008, pp. 3501–3506.

[5] F. Eyben, M. Wöllmer, and B. Schuller, “openear - introducing
the munich open-source emotion and affect recognition toolkit,”
in 2009 3rd International Conference on Affective Computing and
Intelligent Interaction and Workshops. IEEE, 2009, pp. 1–6.

[6] ——, “Opensmile: the munich versatile and fast open-source au-
dio feature extractor,” in Proceedings of the international confer-
ence on Multimedia, ser. MM ’10. New York, NY, USA: ACM,
2010, pp. 1459–1462.

[7] T. Vogt, E. André, J. Wagner, S. Gilroy, F. Charles, and
M. Cavazza, “Real-time vocal emotion recognition in artistic in-
stallations and interactive storytelling: Experiences and lessons
learnt from callas and iris,” in Proceedings of the International
Conference on Affective Computing and Intelligent Interaction
(ACII), Amsterdam, The Netherlands, September 2009.

[8] A. Mehrabian, “Framework for a comprehensive description and
measurement of emotional states.” Genetic, social, and general
psychology monographs, vol. 121, no. 3, pp. 339–361, August
1995.

[9] F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, and
B. Weiss, “A database of german emotional speech,” in in Pro-
ceedings of Interspeech, Lissabon, 2005, pp. 1517–1520.

[10] S. Steidl, Automatic Classification of Emotion-Related User
States in Spontaneous Childrens Speech. Logos Verlag, Berlin,
2009.

[11] T. Vogt, E. André, and N. Bee, “Emovoice - a framework for
online recognitionof emotions from voice,” in Proceedings of
Workshop on Perception and Interactive Technologies for Speech-
Based Systems. Kloster Irsee, Germany: Springer, June 2008.

[12] S. W. Gilroy, M. Cavazza, R. Chaignon, S.-M. Mäkelä, M. Nira-
nen, E. André, T. Vogt, J. Urbain, H. Seichter, M. Billinghurst, and
M. Benayoun, “An affective model of user experience for interac-
tive art,” in ACE ’08: Proc. of the 2008 International Conference
on Advances in Computer Entertainment Technology. New York,
NY, USA: ACM, 2008, pp. 107–110.

[13] F. Charles, D. Pizzi, M. Cavazza, T. Vogt, and E. André, “Emo-
tional input for character-based interactive storytelling,” in The
8th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), Budapest, Hungary, 2009.

[14] G. Caridakis, J. Wagner, A. Raouzaiou, Z. Curto, E. André, and
K. Karpouzis, “A multimodal corpus for gesture expressivity anal-
ysis.” Multimodal Corpora: Advances in Capturing, Coding and
Analyzing Multimodality, LREC, Malta, May 17-23, 2010, 2010.

[15] J. Urbain, R. Niewiadomski, E. Bevacqua, T. Dutoit, A. Moinet,
C. Pelachaud, B. Picart, J. Tilmanne, and J. Wagner, “Avlaughter-
cycle,” Journal on Multimodal User Interfaces, vol. 4, pp. 47–58,
2010.


